Minimising convex combinations of low eigenvalues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex combinations of harmonic shears of slit mappings

‎In this paper‎, ‎we study the convex combinations of harmonic mappings obtained by shearing a class of slit conformal mappings‎. ‎Sufficient conditions for the convex combinations of harmonic mappings of this family to be univalent and convex in the horizontal direction are derived‎. ‎Several examples of univalent harmonic mappings constructed by using these methods are presented to illustrate...

متن کامل

Linear combinations of graph eigenvalues

Let 1 (G) : : : n (G) be the eigenvalues of the adjacency matrix of a graph G of order n; and G be the complement of G: Suppose F (G) is a …xed linear combination of i (G) ; n i+1 (G) ; i G ; and n i+1 G ; 1 i k: We show that the limit lim n!1 1 n max fF (G) : v (G) = ng always exists. Moreover, the statement remains true if the maximum is taken over some restricted families like “Kr-free”or “r...

متن کامل

Convex Sets and Convex Combinations

Convexity is one of the most important concepts in a study of analysis. Especially, it has been applied around the optimization problem widely. Our purpose is to define the concept of convexity of a set on Mizar, and to develop the generalities of convex analysis. The construction of this article is as follows: Convexity of the set is defined in the section 1. The section 2 gives the definition...

متن کامل

ELA Linear Combinations of Graph Eigenvalues 331

Let µ 1 (G) ≥. .. ≥ µn (G) be the eigenvalues of the adjacency matrix of a graph G of order n, and G be the complement of G. Suppose F (G) is a fixed linear combination of µ i (G) , µ n−i+1 (G) , µ i G ¡ , and µ n−i+1 G ¡ , 1 ≤ i ≤ k. It is shown that the limit lim n→∞ 1 n max {F (G) : v (G) = n} always exists. Moreover, the statement remains true if the maximum is taken over some restricted fa...

متن کامل

Convex Hull, Set of Convex Combinations and Convex Cone

Let V be a real linear space. The functor ConvexComb(V ) yielding a set is defined by: (Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination of V . Let V be a real linear space and let M be a non empty subset of V . The functor ConvexComb(M) yielding a set is defined as follows: (Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination of M . We no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2014

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv/2013070